80 research outputs found

    Flexpop: A popularity-based caching strategy for multimedia applications in information-centric networking

    Get PDF
    Information-Centric Networking (ICN) is the dominant architecture for the future Internet. In ICN, the content items are stored temporarily in network nodes such as routers. When the memory of routers becomes full and there is no room for a new arriving content, the stored contents are evicted to cope with the limited cache size of the routers. Therefore, it is crucial to develop an effective caching strategy for keeping popular contents for a longer period of time. This study proposes a new caching strategy, named Flexible Popularity-based Caching (FlexPop) for storing popular contents. The FlexPop comprises two mechanisms, i.e., Content Placement Mechanism (CPM), which is responsible for content caching, and Content Eviction Mechanism (CEM) that deals with content eviction when the router cache is full and there is no space for the new incoming content. Both mechanisms are validated using Fuzzy Set Theory, following the Design Research Methodology (DRM) to manifest that the research is rigorous and repeatable under comparable conditions. The performance of FlexPop is evaluated through simulations and the results are compared with those of the Leave Copy Everywhere (LCE), ProbCache, and Most Popular Content (MPC) strategies. The results show that the FlexPop strategy outperforms LCE, ProbCache, and MPC with respect to cache hit rate, redundancy, content retrieval delay, memory utilization, and stretch ratio, which are regarded as extremely important metrics (in various studies) for the evaluation of ICN caching. The outcomes exhibited in this study are noteworthy in terms of making FlexPop acceptable to users as they can verify the performance of ICN before selecting the right caching strategy. Thus FlexPop has potential in the use of ICN for the future Internet such as in deployment of the IoT technology

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    Giant cell reparative granuloma of temporal bone: Case report of a 62-year-old male

    Get PDF
    Giant cell reparative granuloma (GCRG) is an uncommon non‑neoplastic reactive tumor which occurs almost exclusively within the mandible and maxilla. GCRG of the temporal bone is a rare condition. It has been found to affect predominantly adolescents and adults (age: 10‑25 years). We report a case of a 62‑year‑old male with GCRG of left temporal bone who presented to us with progressive left temporal swelling for 3 months. It was associated with hearing loss. There was no history of trauma. A non‑contrast computed tomography scan brain showed a locally destructive lesion involving squamous temporal bone closely related to the left temporal lobe and infratemporal fossa. Magnetic resonance imaging brain with contrast showed a hypointense lesion on T1 and with peripheral contrast enhancement after gadolinium injection. Patient underwent left temporal craniotomy with atticotomy, mastoidectomy, duraplasty, and opening of middle ear and temporomandibular joint. A bone graft was then taken from right iliac crest and used to repair the resulting defect. Final histopathology report confirmed GCRG. We discuss radiological and histopathological features of lesion in this case report

    StabTrust-A Stable and Centralized Trust-Based Clustering Mechanism for IoT Enabled Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular Ad-hoc Network (VANET) is a modern era of dynamic information distribution among societies. VANET provides an extensive diversity of applications in various domains, such as Intelligent Transport System (ITS) and other road safety applications. VANET supports direct communications between vehicles and infrastructure. These direct communications cause bandwidth problems, high power consumption, and other similar issues. To overcome these challenges, clustering methods have been proposed to limit the communication of vehicles with the infrastructure. In clustering, vehicles are grouped together to formulate a cluster based on certain rules. Every cluster consists of a limited number of vehicles/nodes and a cluster head (CH). However, the significant challenge for clustering is to preserve the stability of clusters. Furthermore, a secure mechanism is required to recognize malicious and compromised nodes to overcome the risk of invalid information sharing. In the proposed approach, we address these challenges using components of trust. A trust-based clustering mechanism allows clusters to determine a trustworthy CH. The novel features incorporated in the proposed algorithm includes trust-based CH selection that comprises of knowledge, reputation, and experience of a node. Also, a backup head is determined by analyzing the trust of every node in a cluster. The major significance of using trust in clustering is the identification of malicious and compromised nodes. The recognition of these nodes helps to eliminate the risk of invalid information. We have also evaluated the proposed mechanism with the existing approaches and the results illustrate that the mechanism is able to provide security and improve the stability by increasing the lifetime of CHs and by decreasing the computation overhead of the CH re-selection. The StabTrust also successfully identifies malicious and compromised vehicles and provides robust security against several potential attacks.This work was supported by the Deanship of Scientific Research, King Saud University through the Vice Deanship of Scientific Research Chairs. The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs

    A popularity based caching strategy for the future Internet

    Get PDF
    Information-Centric Networking (ICN) is an attractive network model receiving increasing consideration by the research community because of its inspiring features. To better manage the Internet usage move from host-centric communication to receiver-driven content retrieval, revolutionary ICN architectures have been proposed. A distinguished characteristic of these innovative architectures is to provide ubiquitous and transparent in-network caching to enhance network resource utilization and accelerate content dissemination. With the exponential increase of Internet traffic, the issue of content storage is a growing concern in ICN. In this paper, we present a caching strategy that considerably increases cache hit rate and reduces stretch ratio, which are the most important metrics in the evaluation of ICN caching. Through extensive simulations, it is shown that our proposed work is a favorable and realistic contribution for the standardization exercise of data caching for achieving accurate and valid network performance in the future Internet

    Trust management techniques for the internet of things: A survey

    Get PDF
    A vision of the future Internet is introduced in such a fashion that various computing devices are connected together to form a network called Internet of Things (IoT). This network will generate massive data that may be leveraged for entertainment, security, and most importantly user trust. Yet, trust is an imperative obstruction that may hinder the IoT growth and even delay the substantial squeeze of a number of applications. In this survey, an extensive analysis of trust management techniques along with their pros and cons is presented in a different context. In comparison with other surveys, the goal is to provide a systematic description of the most relevant trust management techniques to help researchers understand that how various systems fit together to bring preferred functionalities without examining different standards. Besides, the lessons learned are presented, and the views are argued regarding the primary goal trust which is likely to play in the future Internet. 2018 IEEE.This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-01411, A Micro-Service IoTWare Framework Technology Development for Ultra small IoT Device).Scopus2-s2.0-8506427487

    Improved Resource Allocation in 5G MTC Networks

    Get PDF
    Effective resource allocation has always been one of the serious challenges in wireless communication. A considerable number of machine type communication (MTC) devices in 5G with variable quality of service (QoS) aggravates this challenge even further. Existing Resource allocation schemes in MTC are usually considering signal to noise ratio (SNR), which provides preference to MTC devices based on distance rather than their QoS requirements. This paper proposes a resource allocation scheme with dynamic priorities for MTC devices with multiple radio access technologies (RATs). The proposed resource allocation scheme has two main parts namely medium access and resource allocation. The medium access leverages the broadcast nature of wireless signal and MTC devices' wait time to assign priorities using capillary band in a secure and integral way. At resource allocation, SNR, total induced transmission delay, and transmission-Awaiting MTC devices are used to assign resources in the cellular band. The rumination of two-staged dynamic priorities in the proposed scheduling scheme brings significant performance improvements in outage and success probabilities. Compared to SNR-based schemes, the proposed mechanism performs well by expressively improving the outage and success probability by 20% and 30%, respectively.1
    corecore